FuturePlus Systems Corporation

Agilent Technologies Innovating the HP Way

Premier Solution Partner

USB Analysis Probe Users Manual-FS4100

For Agilent Logic Analyzers

Revision 2.7

FuturePlus Systems is a trademark of FuturePlus Systems Corporation Copyright 1998 FuturePlus Systems Corporation

HOW TO REACH US	4
PRODUCT WARRANTY	5
Limitation of warranty Exclusive Remedies	5 6
Assistance	6
INTRODUCTION	7
How to Use This Manual	7
ANALYZING THE UNIVERSAL SERIAL BUS	9
Duplicating the Master Diskette	9
Accessories Supplied	9
Minimum Equipment Required	10
Revisions	10
Signal Naming Conventions	10
The USB Analysis Probe Switches and Diodes The Slow Speed Only Switch and LED USB Busy LED Ready LED VCC LED	10 10 10 10 10
Connecting to the USB Analysis Probe	11
Installing the USB Analysis Probe	11
Setting up the Analyzers installed in the 16500 mainframe.	12
Setting up the 167xx Analyzer	12
Setting up the 1680/90/900 Analyzer 1680/90/900 licensing	13
Loading 1680/90/900 configuration files	13
1680/90/900, 167xx Configuration files	15
Offline Analysis	15
The Format Menu	18

The STAT variable The ADDR and DATA variables The PID variable The CTLCMD variable	19 19 19 21
COMBINATION MODE	22
Bad EOP Detection	22
Low Speed/High Speed detection	23
STATE ANALYSIS	25
Installation Quick Reference	25
Acquiring Data	26
The State Display	26
Analysis Probe related error messages	27
USB CRC and Serial Bit Errors	27
Installation Quick Reference	29
Acquiring Data	30
POD 3 Description End of Packet State Machine Load Byte Count State Machine	30 31 32
USB Analysis Probe Test Points POD 4 Description	33 34
The Waveform Display	34
GENERAL INFORMATION	35
Characteristics Standards Supported Power Requirements Logic Analyzer Required Number of Probes Used Supported speeds Signal loading Operations Environmental Temperature Altitude Humidity Testing and Troubleshooting Servicing	35 35 35 35 35 35 35 35 36 36 36 36 36 36
Signal Connections	36

How to reach us

For Technical Support:

FuturePlus Systems Corporation 36 Olde English Road Bedford NH 03110 TEL: 603-471-2734 FAX: 603-471-2738 On the web <u>http://www.futureplus.com</u>

For Sales and Marketing Support:

FuturePlus Systems Corporation TEL: 719-278-3540 FAX: 719-278-9586 On the web <u>http://www.futureplus.com</u>

FuturePlus Systems has technical sales representatives in several major countries. For an up to date listing please see <u>http://www.futureplus.com/contact.html</u>.

Agilent Technologies is also an authorized reseller of many FuturePlus products. Contact any Agilent Technologies sales office for details.

Product Warranty

This FuturePlus Systems product has a warranty against defects in material and workmanship for a period of 1 year from the date of shipment. During the warranty period, FuturePlus Systems will, at its option, either replace or repair products proven to be defective. For warranty service or repair, this product must be returned to the factory.

For products returned to FuturePlus Systems for warranty service, the Buyer shall prepay shipping charges to FuturePlus Systems and FuturePlus Systems shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to FuturePlus Systems from another country.

FuturePlus Systems warrants that its software and hardware designated by FuturePlus Systems for use with an instrument will execute its programming instructions when properly installed on that instrument. FuturePlus Systems does not warrant that the operation of the hardware or software will be uninterrupted or error-free.

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the

Limitation of warranty

product, or improper site preparation or maintenance. NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. FUTUREPLUS SYSTEMS SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

- **Exclusive Remedies** THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. FUTUREPLUS SYSTEMS SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.
- Assistance Product maintenance agreements and other customer assistance agreements are available for FuturePlus Systems products. For assistance, contact the factory.

Introduction

The USB Analysis Probe module provides a complete interface between any point on the USB and an Agilent Logic Analyzer. The Analysis Probe interface receives the USB serial bit stream and converts it to an understandable parallel bus that is then acquired by the logic analyzer.

The USB Analysis Probe is a passive bus monitor which does not assert any signals on the USB. The USB signals are received with a USB compliant transceiver. The power for the Analysis Probe logic and transceiver is taken from the logic analyzer. Thus the Analysis Probe does not draw power from the USB wire.

The USB Analysis Probe software configures all the logic analyzer menus for compatibility with the USB Analysis Probe. When the configuration file is loaded and the analyzer is set to STATE mode, an inverse assembler is also loaded which decodes USB packets into easy to read mnemonics.

The USB Analysis Probe also provides access to the actual USB wire for both digital and analog measurements. D+, D-, GND, USB Power and the transceiver outputs of VP, VM, and RCV are also provided on the test points.

This manual is organized to help you quickly find the information you need.

• Analyzing the Universal Serial Bus chapter introduces you to the USB Analysis Probe and lists the minimum equipment required and accessories supplied for USB analysis. Characteristics common to state and timing analysis are also detailed.

How to Use This Manual

- The **State Analysis** chapter explains how to configure the USB Analysis Probe to perform state analysis on your USB.
- The **Timing Analysis** chapter explains how to configure the USB Analysis Probe to perform timing analysis on your USB .
- The **General Information** chapter provides some general information including the operating characteristics for the USB Analysis Probe module and the cable header pinout.

Analyzing the Universal Serial Bus

This chapter introduces you to the USB Analysis Probe and lists the minimum equipment required and accessories supplied for Universal Serial Bus analysis. This chapter also contains information that is common to both state and timing analysis.

Before you use the USB Analysis Probe software, make a duplicate copy of the master diskette. Then store the master diskette and use the back-up copy to configure your logic analyzer. This will help prevent the possibility of losing or destroying the original files in the event the diskette wears out, is damaged, or a file is accidentally deleted.

To make a duplicate copy, use the Duplicate diskette operation in the disk menu of your logic analyzer. For more information, refer to the reference manual for your logic analyzer.

The USB Analysis Probe product consists of the following accessories:

- The USB Analysis Probe interface hardware
- The inverse assembly and configuration software on a 3.5 inch diskette.
- This operating manual

Master Diskette

Duplicating the

Accessories Supplied

Minimum Equipment Required	The minimum equipment required for analysis of a Universal Serial Bus consists of the following equipment:	
	 A 166x, 167x , 1680/90, 1671x , 1674X, 1655x or 1675x logic analyzer 	
	The USB Analysis Probe Product	
	A USB target wire	
Revisions	This manual applies to Hardware revisions ACE or later and software revision 3.0 or later.	
Signal Naming Conventions	This operating manual uses the same signal notation as the UNIVERSAL SERIAL BUS SPECIFICATION - REVISION 1.0.	
The USB Analysis Probe Switches and Diodes	The USB Analysis Probe contains one switch and four LEDs	
The Slow Speed Only Switch and LED	The slow speed switch should be in the ON position (LED ON) when the USB Analysis Probe is on a slow speed only wire or slow speed only segment of the USB. When attached to a high speed segment or mixed segment (slow speed and high speed traffic) the switch should be in the OFF position (LED OFF).	
USB Busy LED	The USB Busy LED is lit when the USB Analysis Probe is actively receiving packets from the USB wire. The LED may appear dim if the traffic load is light.	
Ready LED	The Ready LED indicates that the on board serial ROM has successfully loaded the FPGA and that the USB Analysis Probe is ready for USB analysis.	
VCC LED	The VCC LED on the USB Analysis Probe indicates that power is applied from the logic analyzer to the USB Analysis Probe logic. For correct operation of the USB Analysis Probe the VCC LED must be lit.	

Connecting to the USB Analysis Probe

The following explains how to connect the logic analyzer to the USB Analysis Probe for either state or timing analysis:

- 1. Remove the probe tip assemblies from the logic analyzer cables.
- 2. Plug the logic analyzer cables into the USB Analysis Probe cable headers as shown in the appropriate following tables.

Logic Analyzer	USB Analysis Probe	Comment
Master POD 1	Header 1	State analysis
POD 2	Header 2	State analysis
POD 3	Header 3	Timing analysis

Installing the USB Analysis Probe

The USB Analysis Probe can be installed in any segment of the Universal Serial Bus. However, to view all packets from the Host the USB Analysis Probe must be placed between the Host and the USB Hub or USB device. The following steps explain how to install the USB Analysis Probe onto the Universal Serial Bus.

- 1. Install the logic analyzer cables as described in the previous section.
- 2. Plug the USB Analysis Probe IN cable to the upstream Host or Hub. The USB Analysis Probe OUT connector can be connected down stream to either a Hub or device or it can be left unconnected.
- 3. Turn on the logic analyzer on so that the VCC and READY LEDs on the USB Analysis Probe are lit.

NOTE: Connect the USB Analysis Probe to the USB wire as described in step 2 prior to powering up the logic analyzer.

Setting up the Analyzers installed in the 16500 mainframe. The logic analyzer can be configured for USB analysis by loading the USB configuration file. Loading this file will load the Universal Serial Bus inverse assembler and configure your logic analyzer for USB analysis.

- 1. Install the 16500 USB Analysis Probe Software for the FS4100 flexible diskette in the disk drive of the logic analyzer.
- 2. Configure the menu to "Load" the analyzer with the appropriate configuration file (see table below).

Logic Analyzer	File name
16555, 16710/1/2	USB555
166x	USB660
16550	USB550

3. Execute the load operation to load the file into the target logic analyzer. **NOTE: Do not select ALL** or SYSTEM as the target of the load operation, select the logic analyzer that is connected to the USB Analysis Probe.

The 16600/16700 requires a special install procedure to install the FS4100 software. To accomplish this, insert the diskette labeled **16700/702 Installation disk for the FS4100** into the 16700/702 diskette drive. From the SYSTEM ADMINISTRATION TOOLS select *INSTALL* under *SOFTWARE*. From the SOFTWARE INSTALL screen select the *FLEXIBLE DISK* and *APPLY*. The package FS4100 will now appear. Select it and then select *INSTALL*. This procedure does not need to be repeated. It only needs to be done the first time the USB Analysis Probe is used.

When this has completed restart the logic analysis session and either invoke the *Setup Assistant* from the logic analyzer screen or load the appropriate configuration file from the

Configs/FuturePlus/FS4100 directory. The Setup Assistant will guide you in configuring the logic analyzer. Select FuturePlus from the list on the left of the Setup Assistant screen and then USB from the list that then appears. If you prefer to load the

Setting up the 167xx Analyzer

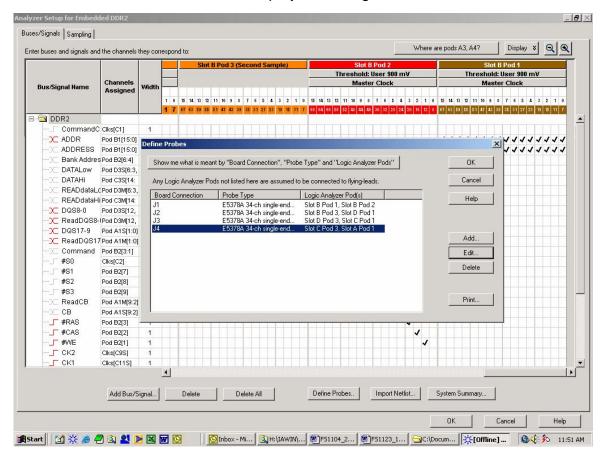
configuration file yourself, see table below for a list of analyzers and corresponding configuration files.

Note: The Logic Analysis System's Operating System must be version **A.01.40.00** with patches 034 and 035 or higher to be compatible with the software provided on the installation diskette for the 167xx.

The 1680/90/900 Analyzer is a PC based application that requires a PC running the Windows OS or a 16900 frame.

Setting up the 1680/90/900 Analyzer	Before installing the protocol decoder for the USB protocol on a PC you must install the Agilent logic analyzer software. Once the Agilent logic analyzer software is installed, you can install the FS4100 protocol decoder by placing the CD-ROM disk into the CD-ROM drive of the target computer or Analyzer and executing the .exe setup program that is contained on the disk. The .exe setup file can be executed from within the File Explorer PC Utility. You must navigate to the .exe file on the CD-ROM disk and then double click the .exe file name from within the File Explorer navigation panel.
	The installation procedure does not need to be repeated. It only needs to be done the first time the Analysis Probe Adapter is used.
1680/90/900 licensing	The USB Inverse Assembler is a licensed product that is locked to a single hard drive. The licensing process is performed by Agilent. There are instructions on this

with this product.


Loading 1680/90/900 configuration files

When the software has been licensed you should be ready to load a configuration file. You can access the configuration files by clicking on the folder that was placed on the desktop. When you click on the folder it should open up to display all the configuration files to choose from. If you put your mouse cursor on the name of the file a description will appear telling you what the setup consists of, once you choose the configuration file that is appropriate for your configuration the 16900 operating system should execute. The protocol decoder automatically loads when the configuration file is loaded. If the decoder does not load, you may load it by selecting tools from

process on the SW Entitlement certificate provided

the menu bar at the top of the screen and select the decoder from the list.

After loading the configuration file of choice, go into the format specification of the configuration by choosing Setup from the menu bar and then selecting Bus/Signal in the drop down menu. When the format specification appears press Define Probes at the bottom of the screen. The Define Probes feature will describe how to hook the analyzer cards to the connections on the target. The following figure shows what the Define Probes screen looks like. The figure below may differ from your display; this is an example of how the display looks in general.

Note: In the above picture under Logic analyzer pods, the first pod goes to the Odd pod and the second goes to the Even pod of the termination adapter (e.g. Pod B1 goes to odd termination adapter pod and B2 goes to the even termination adapter pod).

167xx Analyzer	169xx Analyzer	File Name
16550 / 16710/1/2		CUSB41_1
16555/6/7		CUSB41_2
16715/6/7, 1674x, 1675x		CUSB41_3
1680/90 (State)	1680/90, 16750/1/2, 1691x (State)	CUSB41_6
1680/90 (Timing)	1680/90, 16750/1/2, 1691x (Timing)	CUSB41_7

Offline Analysis

Data that is saved on a 167xx analyzer in fast binary format, or 16900 analyzer data saved as a *.ala file, can be imported into the 1680/90/900 environment for analysis. You can do offline analysis on a PC if you have the 1680/90/900 operating system installed on the PC, if you need this software please contact Agilent.

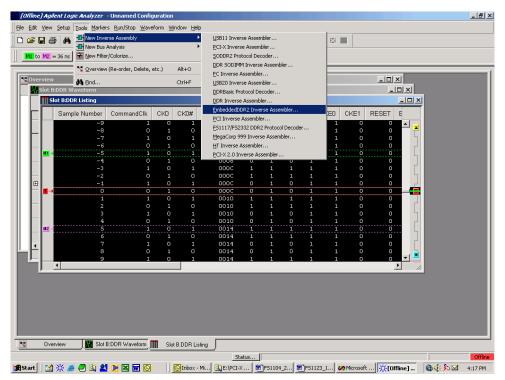
Offline analysis allows a user to be able to analyze a trace offline at a PC so it frees up the analyzer for another person to use the analyzer to capture data.

If you have already used the license that was included with your package on a 1680/90/900 analyzer and would like to have the offline analysis feature on a PC you may buy additional licenses, please contact FuturePlus sales department.

In order to view decoded data offline, after installing the 1680/90/900 operating system on a PC, you must install the FuturePlus software. Please follow the installation instructions for "Setting up 1680/90/900 analyzer". Once the FuturePlus software has been installed and licensed follow these steps to import the data and view it.

From the desktop, double click on the Agilent logic analyzer icon. When the application comes up there

will be a series of questions, answer the first question asking which startup option to use, select Continue Offline. On the analyzer type question, select cancel. When the application comes all the way up you should have a blank screen with a menu bar and tool bar at the top.


For data from a 1680/90/900 analyzer, open the .ala file using the File, Open menu selections and browse to the desired .ala file.

For data from a 16700, choose File -> Import from the menu bar, after selecting import select "yes" when it asks if the system is ready to import 16700 data.

[[[[I]] [I]] Agilent Logic Analyzer	_ 8 >
Elle Edit View Setup Tools Markers Run/Stop <no active="" window=""> Window Help</no>	
□ 2 2 2 3 3 3 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1	
16700 Fast Binary Data Import Wizard	
Welcome to the 15700 Fast Binary Data Import Wizard. This wizard will guide you through the steps of importing 15700 Fast Binary format data into the system.	
Is the system already set up correctly for the 16700 data you wish to import? Yes	
C No	
<back next=""> Cancel Help</back>	
For Help, press F1 <u>9.atus</u> #Start 1 📝 🔆 🕭 🖨 🔄 🍳 🕅 🔯 🗑 🙆 😡 😨 🗿	Offline

After clicking "next" you must browse for the fast binary data file you want to import. Once you have located the file and clicked start import, the data should appear in the listing.

After the data has been imported you must load the protocol decoder before you will see any decoding. To load the decoder select Tools from the menu bar, when the drop down menu appears select Inverse Assembler, then choose the name of the decoder for your particular product. The figure below is a general picture; please choose the appropriate decoder for the trace you are working with.

After the decoder has loaded, select Preferences if required, from the overview screen and set the preferences to their correct value in order to decode the trace properly. This is a general requirement, some decoders do not have preferences, if this is the case then no preference setting is necessary.

The Format Menu

The USB Analysis Probe diskette sets up the format menu as shown in the following table. This format is the same for both Timing and State Analysis. Pods 1 and 2 are for STATE analysis and POD 3 is useful for Timing analysis.

Label	Pod 4	Pod 3	Pod 2	Pod 1
STAT			15:11	16
ADDR			10:0	
DATA			15:0	15:0
ADR			10:4	
ENDPNT			3:0	
PID			15:11	16
CTLCMD			15:11	16:8
MCLK			16	
CLK12		16		
MDATA		15		
SOFTIC		14		
EOP2_1		13:11		
LBC3_0		10:7		
RESRVD		6:4		
FEOPR		3		
FEOSYN		2		
LSDET		1		
UNUSED		0		
VP	2			
VM	1			
RCV	0			

The STAT variableThe STAT variable is used by the USB inverse
assembler to decode USB transactions. It should not
be changed or deleted from the format menu.

The ADDR and DATA
variablesThe ADDR variable is the address and endpoint as
decoded from the USB serial bit stream. The DATA
variable is the Data associated with a Data0 or Data1
packet.

For ease of triggering the address and endpoint seen in the token packets Setup, In and Out are latched by the USB Analysis Probe and held through the reporting of the data for the DATA0 and DATA1 packets.

The PID variableThe PID variable describes the PID and various errors
detected by the USB Analysis Probe. This variable is
most effectively used for triggering and are available
to be used in combination with any other variable
defined in the FORMAT menu.

Symbol	Binary Code	Comment
IDLE	000000	IDLE STATE
SETUP	000001	SETUP
IN	000010	IN
OUT	000011	OUT
SOF	000100	START OF FRAME
DATA0	0X0101	DATA0
CTL DATA0	1X0101	CTL_DATA0
DATA1	0X0110	DATA1
CTL DATA1	1X0110	CTL_DATA1
CRC DATA	000111	CRC DATA
PRE	011000	PREAMBLE
ACK	011001	ACKNOWLEDGE
NCK	011010	NO ACKNOWLEDGE
STALL	011011	STALL
USB RESET	111111	USB RESET

Symbol	Binary Code	Comment
RESET END	111001	RESET DEASSERTS
INVALID	011101	INVALID PID RECEIVED
BAD PID	011110	BAD PID RECEIVED
SUSPEND	111110	SUSPEND CONDITION DETECTED
RESUME	111101	RESUME CONDITION DETECTED
KEEP ALIVE	111011	KEEP ALIVE
SETUP SBS ERROR	001001	SETUP PACKET WITH SERIAL BIT STUFFED ERROR DETECTED
IN SBS ERROR	001010	IN PACKET WITH SERIAL BIT STUFFED ERROR DETECTED
OUT SBS ERROR	001011	OUT PACKET WITH SERIAL BIT STUFFED ERROR DETECTED
SOF SBS ERROR	001100	START OF FRAME SERIAL BIT STUFFED ERROR DETECTED
DATA0 SBS ERROR	001101	DATA0 PACKET WITH SERIAL BIT STUFFED ERROR DETECTED
DATA1 SBS ERROR	001110	DATA1 PACKET WITH SERIAL BIT STUFFED ERROR DETECTED
CRC DATA SBS ERR	001111	CRC DATA WITH SERIAL BIT STUFFED ERROR DETECTED
SETUP CRC ERROR	010001	SETUP PACKET WITH CRC ERROR DETECTED
IN CRC ERROR	010010	IN PACKET WITH CRC

Symbol	Binary Code	Comment
		ERROR DETECTED
SOF CRC ERROR	010100	START OF FRAME PACKET WITH CRC ERROR DETECTED
OUT CRC ERROR	010011	OUT PACKET WITH CRC ERROR DETECTED
CRC DATA CRC ERR	010111	CRC DATA WITH CRC ERROR DETECTED
ANY ERROR	111000	ERROR SUMMARY BIT
SLOW SOF	011111	SOF TOKEN DETECTED AT SLOW SPEED
RESUME SE0	111100	SE0 SENT AT END OF RESUME SIGNALING
RESUME JSATE	111010	JSTATE SENT AT END OF RESUME SIGNALING
POSSIBLE BAD EOP	110111	DETECTED INCORRECT J STATE AS EOP SIGNALING AT SLOW SPEED.

The CTLCMD variable

The CTLCMD variable decodes the Setup Data into the appropriate command.

Standard Device Requests
GET_STATUS
CLEAR_FEATURE
SET_FEATURE
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR

Standard Device Requests
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE
SET_INTERFACE
SYNCH_FRAME

COMBINATION MODE

The default mode set up by the software shipped with the Analysis Probe is the following configuration.

(1M Sample LA C) (Conf	iguration	(Cancel) (Run
Analyzer 1 Name: USB_ST Type: State	Analyzer 2 Name: USB_TM Type: Timing	Unassigned Pods
C1: J_ C2: K_	C3:L. C4:M.	

Bad EOP Detection

If the FS4100 operating in full speed mode, detects a valid SE0 for at least 60ns but a valid J_STATE does not follow, it will do the following.

- 1. Detect an end of packet (FEOPR TRUE in Timing mode).
- 2. Pass the packet up to the logic analyzer.
- 3. Pass a "POSSIBLE BAD EOP" status to the analyzer.

If the FS4100 operating in slow speed mode, detects a valid SE0 for at least 300ns but a valid J_STATE does not follow, it will do the following.

- 1. Detect an end of packet (FEOPR TRUE in Timing mode).
- 2. Pass the packet up to the logic analyzer.

3. Pass a "POSSIBLE BAD EOP" status to the Analyzer.

A status of "POSSIBLE BAD EOP" should be treated as cautionary and the user would be advised to view the received signals in timing mode by doing the following.

- 1. Attach POD 3 of the analyzer to POD 3 of the USB Analysis Probe.
- 2. Attach a flying lead set to stake pins RCV, VP and VM.
- 3. In state mode trigger on PID " POSSIBLE BAD EOP". Using the arming control trigger the timing Analyzer from the State Analyzer.
- 4. Once the State Analyzer Triggers switch to Timing Analyzer Waveform 2.

The USB Analysis Probe can switch automatically from high speed to low speed upon the detection of the Preamble PID. The Analysis Probe then detects only low speed traffic. Upon the receipt of a low speed acknowledge or an internal time-out (greater than 16 low speed bit times). The Analysis Probe will switch back to high speed. The following explains in more detail the sequences the Analysis Probe looks for in making the decision whether to switch from high speed to low speed and back.

Sequence 1

- 1. Detection of a PREAMBLE switch to low speed
- 2. Look for SETUP or OUT packet in low speed then switch back to high speed.
- 3. Look for PREAMBLE upon detection switch to low speed.
- 4. Look for a single DATA packet or handshake or time-out.
- 5. On receipt of a DATA packet look for a handshake or time-out .
- 6. On receipt of a handshake or the occurrence of a time-out the pre-processor switches back to high speed.

Low Speed/High Speed detection

Sequence 2

- 1. Detection of a PREAMBLE switch to low speed
- Look for IN packet and a following DATA packet and then switch back to high speed. If a DATA packet is not received within the time-out period (18 bit times), the Analysis Probe will switch back to high speed.
- 3. In high speed look for PREAMBLE and handshake

If the Analysis Probe is placed on a low speed only segment the low speed only switch must be placed in the on position (LED lit). This is because on a low speed only segment the Host or Hub will not send a Preamble PID. **NOTE: The low speed only switch need only be placed in the ON position if the Analysis Probe is placed on a LOW SPEED ONLY SEGMENT (no high speed traffic present).**

If users are on a mixed high speed/low speed segment and suspect that low speed/high speed USB specification protocol is not being adhered to, the following steps should be taken.

- 1. Acquire USB traffic with the Analysis Probe Low Speed only switch in the OFF position.
- 2. Acquire USB traffic with the Analysis Probe Low Speed Only switch in the ON position.
- 3. Note any differences and refer to timing mode to determine any out of specification conditions.

State Analysis

	This chapter explains how to configure the USB Analysis Probe to perform state analysis on the Universal Serial Bus. The configuration software on the flexible diskette sets up the format specification menu of the logic analyzer for compatibility with the USB Analysis Probe. The next chapter explains how to configure the USB Analysis Probe to perform timing analysis.		
Installation Quick Reference	The following procedure describes the major steps required to perform measurements with the USB Analysis Probe module.		
	The following explains how to connect the logic analyzer to the USB Analysis Probe for state analysis:		
	 Remove the probe tip assemblies from the logic analyzer cables. 		
	 Plug the logic analyzer cables into the USB Analysis Probe cable headers as shown in the following table. 		
	Logic Analyzer	USB Analysis Probe	Comment
	Master POD 1	Header 1	State analysis (USB_ST)

		·
POD 2	Header 2	State analysis (USB_ST)

3. Plug the USB Analysis Probe IN cable to the upstream Host or Hub. The USB Analysis

	Probe OUT connector can be connected down stream to either a Hub or device or it can be left unconnected.
	 Turn on the logic analyzer so that the VCC and READY LEDs on the USB Analysis Probe are lit. NOTE: Connect the USB Analysis Probe to the USB wire as described in step 2 prior to powering up the logic analyzer.
	5. Load the USB Analysis Probe software for the appropriate logic analyzer
	The logic analyzer is now ready for STATE analysis.
Acquiring Data	Touch RUN and as soon as there is activity on the bus, the logic analyzer will begin to acquire data. The analyzer will continue to acquire data and will display the data when the analyzer memory is full, the trigger specification is TRUE or when you touch STOP.
	The logic analyzer will flash "Slow or Missing Clock" if the USB Analysis Probe provided master clock signal is not being detected by the logic analyzer. This will occur if the USB is IDLE or in an extended suspend state. To accurately determine the state of the USB refer to the Timing analysis chapter in this manual.
The State Display	Captured data is as shown in the following figure. The following figure displays the state listing after disassembly. The inverse assembler is constructed

Captured data is as shown in the following figure. The following figure displays the state listing after disassembly. The inverse assembler is constructed so the mnemonic output closely resembles the actual commands, status conditions, messages and phases specified in the Universal Serial Bus specification. Symbols on the PID variable have also been defined to help aid in analysis. The non-disassembled state listing displays USB mnemonics in addition to data. All data, address, endpoint and frame number fields are displayed in hex.

e Listing<1>				
Fil	le Window Ed	lit Options	Markers Invasm Source	Help
Ø	Run (Dra	g> to copy, <	Drag and drop> to move marker, <	Right-click> to view
	State Number		FUTUREPLUS SYSTEMS c 1997	PID
	Decimal	Relative	USB BUS TRANSACTIONS REV 1.1	Symbol
	-1	999.752 us	SOF FRAME=022	SOF
62	0	3.248 us	SETUP ADDR=00 END_POINT=0	SETUP
	1	3.920 us	GET_DESCRIPTOR Direction=Device to Host Type=Standard Recipient=Device	DATAO
	2	1.336 us	Descriptor Type= Device	DATAO
	3	1.352 us	wIndex=0000	DATAO
	4	1.312 us	Length=0012	DATAO
	5	768.000 ns		CRC DATA
	6	1.752 us	ACKNOWLEDGE	ACK
	7	986.064 us	SOF FRAME=023	SOF
	8	3.248 us	IN ADDR=00 END_POINT=0	IN
	9	2,016 us	NO ACKNOWLEDGE	NCK
	10	994.480 us	SOF FRAME=024	SOF
	11	3.248 us	IN ADDR=00 END_POINT=0	IN
	12	4.024 us	DATA1= 0112	DATA1
	13	1.336 us	DATA1= 0100	DATA1
	14	1.312 us	DATA1= 0000	DATA1
	15	1.328 us	DATA1= 0800	DATA1
	16	752.000 ns	DATA CRC=C8E7	CRC DATA
	17	2,000 us	ACKNOWLEDGE	ACK
	18	985.752 us	SOF FRAME=025	SOF
	19	999.752 us	SOF FRAME=026	SOF
	20	3.248 us	OUT ADDR=00 END_POINT=0	OUT
	21	3.328 us	DATA CRC=0000	CRC DATA

Analysis Probe related error messages

The following Analysis Probe related error messages are reported by the USB inverse assembler.

FAILED TO IDENTIFY PID

This error will be reported by the inverse assembler if the USB Analysis Probe hardware reports a status code that is undefined. If this error occurs please contact the FuturePlus Systems factory.

USB CRC and Serial Bit Errors

By design the USB Analysis Probe will detect and report CRC and serial bit stuffed errors. The PID variable chart details the CRC and serial bit stuff errors detected.

It is a protocol violation to omit the stuffed zero when the last 6 bits of a packet are ones although the packet data is correct and complete. The Analysis Probe may not indicate that a serial stuffed bit error occurred in this scenario. The USB Analysis Probe will also detect invalid PIDS, bad PIDS and SOF tokens sent at slow speed. The Analysis Probe implements an error summary status called ANY ERROR, this status will be sent to the Analyzer if any of the above error conditions is detected by the Analysis Probe.

Timing Analysis

Pod 3 of the USB Analysis Probe contains signals that describe in more detail the actual state of the USB wire.

Installation Quick Reference

The following procedure describes the major steps required to perform timing analysis measurements with the USB Analysis Probe module.

- 1. After removing the probe tip assemblies, plug logic analyzer header 3 into Analysis Probe header 3.
- 2. Plug the USB Analysis Probe IN cable to the upstream Host or Hub. The USB Analysis Probe OUT connector can be connected down stream to either a Hub or device or it can be left unconnected.
- Position the LOW SPEED ONLY switch to the ON position (LED lit) if the USB Analysis Probe is on a low speed only segment. Position the LOW SPEED ONLY switch to the off position (led doused) if the USB Analysis Probe is on a full speed link.
- 4. Turn on the logic analyzer so that the VCC and READY LEDs on the USB Analysis Probe are lit.

NOTE: Connect the USB Analysis Probe to the USB wire as described in step 2 prior to powering up the logic analyzer.

Acquiring Data	Touch RUN and the logic analyzer will begin to acquire data. The analyzer will continue to acquire data and will display the data when the analyzer memory is full, the trigger specification is TRUE or when you touch STOP.	
	The logic analyzer will flash "Waiting for Trigger" or "occurrences remaining in level x" where x is number of the unsatisfied trigger level if the trigger condition is not satisfied.	
POD 3 Description	Pod 3 was included in the USB Analysis Probe to giv the user a detailed look at the USB wire. The USB Analysis Probe interface contains its own fully compliant USB serial interface engine (SIE). The state bits for the USB state machines for this SIE are available on POD 3. In addition the recovered clock recovered data, start of frame, end of packet, end of sync and low speed/high speed detect signals are available. These signals are useful for :	
	 Shadowing the state of the target USB SIE when that SIE state is unavailable. 	
	 Comparing the state of the target USB SIE with that of the Analysis Probe SIE. 	
	 Making accurate time measurements of USB events. 	

- Accurate USB protocol violation detection.
- Accurate USB signaling violation detection.

POD 3 channel	Signal Name	Description
16	CLK12	Recovered Clock
15	MDATA	Recovered Serial Data

POD 3 channel	Signal Name	Description
14	SOFTIC	Start of Frame. 1 millisecond timer generated from recovered start of frame
13:11	EOP2_0	End of Packet state machine
10:7	LBC3_0	Load Byte State Machine
6:4	RSRVD	Reserved
3	FEOPR	End of packet
2	FEOSYN	End of Sync
1	LSDET	Low Speed Detect
0	unused	

The end of packet state machine state encodings are as follows:

State Name	State Encoding	Description
IDLE	000	Idle state
SEO_FIRST	100	First sample of the single ended zero condition
SEO_SECOND	010	Second sample of the single ended zero condition
SEO_THIRD	110	Third or more sample of the single ended zero condition

End of Packet State Machine

State Name	State Encoding	Description
EOPR_STATE	001	J state transition detected. Valid end of packet
SLOW_SEO_FI RST	101	First slow speed single ended zero condition detected
SLOW_SEO_S ECOND	011	First slow speed single ended zero condition detected
BAD_EOPR_ST ATE	111	Incorrect transition for single ended zero detected. NOTE: FEOPR will be generated in this case so that the next packet can be detected. Users can look for this state if they suspect a bad end of packet condition occurring on the USB.

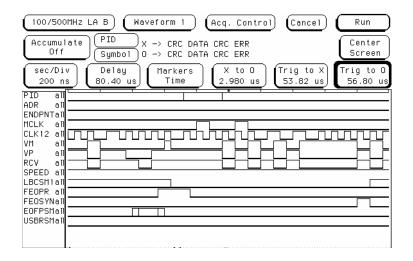
The load byte count state machine is encoded as follows.

State Name	State Encoding	Description
IDLE	0000	IDLE
PID	0001	Have received end of sync and currently receiving PID
State Name	State Encoding	Description

Load Byte Count State Machine

DELAY_1	0010	State delayed by one clock tic
DELAY_2	0011	State delayed by two clock tics
SOF_OR_ADR	0100	Receiving address for token packet or Frame number
SOF_OR_EP	0101	Receiving endpoint for token packet or the remainder of the frame number for start of frame
CRC	0110	Receiving CRC data
PRE_DATA	0111	About to receive data
DATA	1000	Receiving data

USB Analysis Probe Test Points


D+, D-, VP, VM, RCV, USB Power and GND are available to be viewed with spare probes from the logic analyzer or a scope probe.

The format menu has been configured to include POD4. Pod 4 allows the user by means of attaching a flying led set to the stake pins to view the signals that the transceiver is generating in response to the USB traffic.

POD 4 channel	Signal Name	Description
0	RCV	Differential data signal from the USB transceiver
1	VM	VM Signal from the USB transceiver
2	VP	VP Signal from the USB transceiver.

The Waveform Display

Captured data is displayed as shown in the following figure.

General Information

	This chapter provides additional reference information including the characteristics and signal connections for the USB Analysis Probe module.
Characteristics	The following operating characteristics are not specifications, but are typical operating characteristics for the USB Analysis Probe.
Standards Supported	The Universal Serial Bus Specification Revision 1.0
Power Requirements	The USB Analysis Probe does not draw power from the USB wire. All power is provided by the logic analyzer.
Logic Analyzer Required	166x, 167x, 1655x
Number of Probes Used	USB State Analysis - 2 PODS
	USB Timing Analysis - 3 PODS
Supported speeds	The USB Analysis Probe supports both full speed and low speed operation.
Signal loading	The USB Analysis Probe presents one USB transceiver load onto the USB. The Analysis Probe IN and OUT connectors (D+, D-, GND and VCC) are daisy chained so that the USB traffic is not interrupted.
	All signal etch length, trace velocity and impedance is within specification.
Operations	All Universal Serial Bus operations supported.

Environmental Temperature	Operating: 0 to 55 degrees C (+32 to +131 degrees F)	
remperature	Non operating:-40 to +75 degrees C (-40 to +167 degrees F)	
Altitude	Operating: 4,6000m (15,000 ft)	
	Non operating: 15,3000m (50,000 ft)	
Humidity	Up to 90% non condensing. Avoid sudden, extreme temperature changes which would cause condensation on the Analysis Probe module.	
Testing and Troubleshooting	There are no automatic performance tests or adjustments for the USB Analysis Probe module. If a failure is suspected in the USB Analysis Probe contact the factory or your FuturePlus Systems authorized distributor.	
Servicing	The repair strategy for the USB Analysis Probe is replacement. However, if parts of the USB Analysis Probe module are damaged or lost contact the factory for a list of replacement parts.	
Signal Connections	The USB Analysis Probe module monitors signals for both state and timing analysis. The below figure displays how the cable headers are numbered.	
	39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1	
	40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2	
	The following tables list the USB Analysis Probe cable headers and the corresponding Universal Serial Bus signals.	

Analysis Probe Cable Header and Pin number	Logic Analyzer channel number	USB Analysis Probe Signal name
Header 3 pin 3	CLK/16	CLK12
5	no connect	
7	15	MDATA
9	14	SOFTIC
11	13	EOP<2>
13	12	EOP<1>
15	11	EOP<0>
17	10	LBC<3>
19	9	LBC<2>
21	8	LBC<1>
23	7	LBC<0>
25	6	Reserved
27	5	Reserved
29	4	Reserved
31	3	FEOPR
33	2	FEOSYN
35	1	LSDET
37	0	unused

Analysis Probe Cable Header and Pin number	Logic Analyzer channel number	USB Analysis Probe Signal name
Header 2 pin 3	CLK/16	MCLK
5	no connect	
7	15	STAT4
9	14	STAT3
11	13	STAT2
13	12	STAT1
15	11	STAT0
17	10	ADR06
19	9	ADR05
21	8	ADR04
23	7	ADR03
25	6	ADR02
27	5	ADR01
29	4	ADR00
31	3	ENDPNT03
33	2	ENDPNT02
35	1	ENDPNT01
37	0	ENDPNT00

Analysis Probe Cable Header and Pin number	Logic Analyzer channel number	USB Signal name
Header 1 pin 3	CLK/16	STAT5
5	no connect	
7	15	D15
9	14	D14
11	13	D13
13	12	D12
15	11	D11
17	10	D10
19	9	D09
21	8	D08
23	7	D07
25	6	D06
27	5	D05
29	4	D04
31	3	D03
33	2	D02
35	1	D01
37	0	D00